1. 焊接接头的晶间腐蚀
普通纯铁素体不锈钢管焊接接头,在焊接热循环的作用下被加热到950℃以上的温度区域冷却下来后,会显现晶间腐蚀的倾向,然后在700~850℃进行短时间保温退火处理,又可恢复其耐蚀性。所以,焊接接头产生晶间腐蚀的位置是紧挨着焊缝的高温区。而奥氏体不锈钢管焊接接头的晶间腐蚀是在最高温度为600~1000℃的区域,即晶间腐蚀的部位稍稍离开焊缝的区域。
普通纯铁素体不锈钢管焊接接头的晶间腐蚀机理与奥氏体型不锈钢焊接接头晶间腐蚀的机理相同,均认为符合贫铬理论。铁素体不锈钢管一般在退火状态下焊接,其组织为固溶微量碳和氮的铁素体及少量均匀分布的碳和氮的化合物,组织稳定、耐蚀性较好。在受热温度高于950℃的金属中,碳、氮的化合物逐步溶解到铁素体相之中,得到碳、氮过饱和固溶体。由于碳、氮在铁素体中的扩散速度比在奥氏体中快得多,在焊后冷却过程中,甚至在淬火冷却过程中,都来得及扩散到晶界区,加之晶界的碳、氮的浓度较高于晶内,故在晶界上沉淀出(Cr.Fe)23C6碳化物和Cr2N氮化物。由于铬的扩散速度慢,导致在晶界上出现贫铬固溶区。在腐蚀介质的作用下即会出现晶间腐蚀。由于铬在铁素体中的扩散比在奥氏体中快,故为了克服焊缝高温区的贫铬带,只需在700~900℃短时间保温,即可使过饱和的碳和氮完全结合为碳、氮化物析出,而且晶体内的固溶铬又来得及扩散补充到盆铬区,从而恢复到原来的耐蚀性能。同理,在600℃较长时间保温或焊接接头自900℃以上缓慢冷却,使碳、氮化物充分析出,达到或接近钢材退火状态下固溶的碳和氮含量的平衡值时,即能保持其耐蚀性。
2. 焊接接头的脆化
普通纯度铁素体不锈钢在焊接过程中,焊接接头在焊接热循环的作用下,如果在950℃以上停留时间过久,便会引起热影响区晶粒急剧长大和碳、氮化合物沿晶界偏聚,可导致焊接接头的塑性和韧性下降。在室温条件下就可能出现脆裂,即为焊接接头的脆化现象。这种粗大组织不能经过热处理进行细化,因此控制高温停留时间是选定焊接参数的基本原则。
焊接接头的脆化有下列几种形式:
1. 高温加热引起的脆化
焊接接头从1100℃以上温度冷却后,焊接热影响区的室温韧性变低,其脆化程度与合金元素碳和氮的含量有关。碳、氮含量越高,焊接热影响区脆化程度就越严重。焊接接头冷却速度越快,其韧性下降值越多;如果空冷或缓冷,塑性将提高。
2. σ相脆化
普通纯度铁素体型不锈钢(不论母材或焊缝)中w(Cr)>21%时,若在520~820℃长期加热,会出现一种又硬又脆的铁与铬的金属间化合物FenCrm(HV高达800~1000)叫σ相σ相形成与焊缝金属中的化学成分、组织、加热温度、保温时间以及预先冷形变诸因素有关。预先冷形变可促进σ相形成的速度,且使σ相形成的温度降低,同时还能降低钢中形成σ相的最低临界铬含量[w(Cr)<20%]。由于σ相的形成有赖于Cr、Fe等原子的扩散迁移,故形成速度较慢,所以对多数钢材来说,焊接热过程本身甚至通常的焊后热处理,都不易造成明显的σ相脆化。然而,对于长期工作于σ相形成温度区的铁素体型耐热钢的焊接高温构件而言,则是必须重视的问题。一般认为800℃高温时,σ相形成速度可能达到最高值,低于此温度形成σ相速度减慢,且需要较长的时间。
3. 475℃脆性
当w(Cr)≥15.5%的普通纯铁素体型不锈钢在温度400~500℃长期加热后,常常会出现强度升高,韧性下降的现象,称之为475℃脆性。一般随含铬量提高而脆化的倾向严重。焊接接头在焊接热循环作用下,不可避免地要经过该温度区,特别当焊缝金属和热影响区在此温度区停留时间较长时,均有产生475℃脆性的可能。该475℃脆性可通过700~800℃短时间加热,紧接着进行水冷的处理来消除。
4. 局部马氏体引起的脆化
大多数铁素体型不锈钢在室温下能形成稳定的铁素体组织,但是,如果钢或焊缝金属中含铬量偏于铁素体区的下限或者碳和氮含量在允许范围的上限时,可导致晶界在高温时形成一些奥氏体,冷却后转变为马氏体组织,产生轻度脆化。退火处理可使马氏体转变为铁素体组织。